Teaching Schedule

Department of Mathematics

ABV Govt Degree College Sunni, Shimla (H.P.)

BSc 1st Year

Core Courses Course 1: Differential Calculus (MATH101) Course 2: Differential Equations (MATH102) Lectures per Week: 6

Sr. No.	Торіс	Week	Month
1.	Limit and Continuity (epsilon and delta	Last Week	July
	definition),		
2.	Type of Discontinuities and Examples	First Week	August
3.	Differentiability of functions	Second week	August
4.	Successive differentiations and Leibnitz	Third Week	August
	Theorem.		
5.	Indeterminant forms	Fourth Week	August
6.	Rolle's theorem, Lagrange Mean Value	First Week	September
	theorem and Cauchy Mean Value		
	theorem		
7.	Taylor series and Maclaurin series.	Second week	September
8.	Concavity, Convexity and Point of	Third Week	September
	Inflexion.		
9.	Asymptotes, Curvature, Center of	Fourth Week	September
	Curvature.		
10.	MTT	First Week	December
11.	MTT	Second Week	December
12.	Singular points, Double points	Third Week	December
13.	Polar coordinates, Relation between	Fourth Week	December
	Cartesian and polar coordinates		
14.	Functions of several variables (upto	Second Week	February
	three variables): Limit and Continuity		
	of these functions, Partial differentiation		
15.	Euler's theorem on homogeneous	Third Week	February
	functions.		
16.	Maxima and Minima with Lagrange	Fourth Week	February
	Multipliers Method (two variables),		
	Jacobian (upto three variables).		

Course 1: Differential Calculus

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One Presentation session will be held at the end of each month.

Sr. No.	Торіс	Week	Month
1.	Basic theory of linear differential	1 st Week	October
	equations, Wronskian, and its properties		
2.	First order exact differential equations	2 nd Week	October
	and their solutions, Integrating factor		
3.	Integrating factors, rules to find an	3 rd Week	October
	integrating factor		
4.	First order higher degree equations	4 th Week	October
	solvable for x, y, p. Clairut's form.		
5.	Methods for solving higher-order	1 st Week	November
	differential equations, Solving a		
	differential equation by reducing its		
	order.		
6.	Linear homogenous equations with	2 nd Week	November
	constant coefficients, Linear non-		
	homogeneous Differential Equations		
7.	The method of variation of parameters	3 rd Week	November
	with constant coefficients. The Cauchy-		
	Euler equation and Legendre equation.		
8.	Simultaneous differential equations,	4 th Week	November
	Total differential equations		
9.	MTT	First Week	December
10.	MTT	Second Week	December
11.	Order and degree of partial differential	1 st Week	March
	equations, Concept of linear and non-		
	linear partial differential		
	equations.Formation of first order		
	partial differential equations(PDE).		
12.	Linear partial differential equation of	2 nd Week	March
	first order, Lagrange's method and		
	Classification of second order partial		
	differential equations into elliptic,		
	parabolic and hyperbolic through		
	illustrations only.		

Course 2: Differential Equations

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

BSc. 2nd Year

Core Courses

Course 1: Real Analysis (MATH201)

Course 2: Algebra (MATH202)

Lectures per Week: 6

Sr. No.	Торіс	Week	Month
1.	Real line, bounded sets, suprema and	Last Week	July
	infima.		
2.	suprema and infima, completeness	First Week	August
	property of R, Archimedean property of		
	R, intervals.		
3.	Concept of cluster points and statement	Second week	August
	of Bolzano-Weierstrass theorem.		
4.	Real Sequence, Bounded sequence,	Third Week	August
	Cauchy convergence criterion for		
	sequences.		
5.	Cauchy's theorem on limits, order	Fourth Week	August
	preservation and squeeze theorem		
6.	monotone sequences and their	First Week	September
	convergence.		
7.	Infinite series. Cauchy convergence	Second week	September
	criterion for series, positive term series,		
-	geometric series		
8.	Leibnitz test, comparison test,	Third Week	September
-	convergence of p-series.		
9.	Root test, Ratio test, Definition and	Fourth Week	September
	examples of absolute and conditional		
10	convergence.		
10.		First Week	December
11.	MIT	Second Week	December
12.	Topics not covered above	3 rd and 4 th Week	December
13.	Sequences and series of functions,	2 ^{nu} Week	February
	Pointwise and uniform convergence.	and yy y	
14.	Mn-test, M-test	3 ^{ru} Week	February
15.	Results about uniform convergence,	4 ^{un} Week	February
	Power series and radius of convergence		

Course 1: Real Analysis

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

Sr. No.	Торіс	Week	Month
1.	Definition and examples of groups, examples of abelian and non-abelian groups.	1 st Week	October
2.	The group Zn of integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity.	2 nd Week	October
3.	Subgroups, cyclic subgroups	3 rd Week	October
4.	Cosets, Index of subgroup, Lagrange's theorem, order of an element.	4 th Week	October
5.	Normal subgroups: their definition, examples, and characterizations.	1 st Week	November
6.	Quotient groups and related theorems	2 nd Week	November
7.	Definition of Kernel, Basic theorems of homomorphism.	3 rd Week	November
8.	First theorem of Homomorphism and related questions.	4 th Week	November
9.	MTT	First Week	December
10.	MTT	Second Week	December
11.	Topics not covered above+ Definition and examples of rings, examples of commutative and non-commutative rings:	3 rd and 4 th Week	December
12.	Rings from number systems, Zn the ring of integers modulo n. Rings of matrices, Definition of Integral domains and fields.	1 st Week	March
13.	Subrings and ideals	2 nd Week	March

Course 2: Algebra

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

Skill Enhancement Courses (2nd year)

Course 1: Integral Calculus (MATH309TH) Course 2: Vector Calculus (MATH310TH) Lectures per Week: 6

~		.		
Course	1:	Integra	l C'a	lenins.
Course	••	Incesta	i Uu	iculus

Sr. No.	Торіс	Week	Month
1.	Integration by Partial fractions	First Week	August
2.	Integration of rational and irrational functions	Second week	August

3.	Properties of definite integrals	Third Week	August
4.	Reduction Formulae	Fourth Week	August
5.	Reduction by connecting two integrals (smaller index +1) method	First Week	September
6.	Areas and lengths of curves in the plane.	Second Week	September
7.	Volume and surface of solids of revolution.	Third Week	September
8.	Cartesian and parametric form.	Fourth Week	September
9.	Double integrals.	Second Week	February
10.	Triple integrals	Third Week	February

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

Sr. No.	Торіс	Week	Month
1.	Scalar and vector product of three	1 st Week	October
	vectors.		
2.	Product of four vectors. Reciprocal	2 nd Week	October
	vectors, Vector differentiation.		
3.	Scalar valued point functions, vector	3 rd Week	October
	valued point functions. Derivative along		
	a curve.		
4.	directional derivatives, Gradient of a	4 th Week	October
	scalar point function.		
5.	Divergence and curl of a vector point	1 st Week	November
	function. Gradient, Divergence and curl		
	of sums and products. Laplacian		
	operator.	and you d	
6.	Orthogonal curvilinear coordinates.	2 nd Week	November
	Conditions for orthogonality		
7.	Fundamental triads of mutually	3 rd Week	November
	orthogonal unit vectors. Gradient in		
	terms of orthogonal curvilinear		
	coordinators.	ath yy y 1	
8.	Divergence, Curl and Laplacian	4 th Week	November
	operators in terms of orthogonal		
	curvilinear coordinators.	TT . XX7 1	D 1
9.	MIT	First Week	December
10.		Second Week	December
11.	Vector integration: line integral, surface	4 th Week	February
	integral, Volume integral	d of YYY 1	
12.	Theorems of Gauss, Green and Stokes	I st Week	March
	(without proof) and the problems based		
	on these theorems.		

Course 2: Vector Calculus

- There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.
- One (or more) Presentation session will be held at the end of each month.

BSc. 3nd Year

DISCIPLINE SPECIFIC ELECTIVES

DSE 3A: MATRICES (MATH301) DSE 3B: NUMERICAL METHODS (MATH304)

Lectures per Week: 6

Sr. No.	Торіс	Week	Month
1.	Types of matrices.	Last Week	July
2.	Rank of a matrix.	First Week	August
3.	Invariance of rank under elementary	Second week	August
	transformations. Reduction to normal		
	form.		
4.	Solutions of a system of linear	Third Week	August
	equations using matrices.		
5.	Computation of matrix inverses using	Fourth Week	August
	elementary row operations, Matrices in		
	diagonal form.		
6.	Reduction to diagonal form upto	First Week	September
	matrices of order 3, Illustrative		
	examples of above concepts from		
	Geometry, Physics, Chemistry,		
	Combinatorics and Statistics.		
7.	Definition of Vector space, R, R2, R3 as	Second Week	September
	vector spaces over R		
8.	Vector subspaces and concept of Linear	Third Week	September
	dependence/Independence		
9.	Bases and Dimension of a vector space.	Fourth Week	September
10.	MTT	First Week	December
11.	MTT	Second Week	December
12.	Translation, Dilation, Rotation,	Second Week	February
	Reflection in a point, line and plane,		
	Matrix form of basic geometric		
	transformations.		
13.	Interpretation of eigenvalues and eigen	Third Week	February
	vectors for such transformations and		
	eigen spaces as invariant subspaces.		1

DSE 3A: MATRICES (MATH301)

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

Sr. No.	Торіс	Week	Month
1.	Algorithms, Convergence, Bisection	1 st Week	October
	method.		
2.	False position method, secant method,	2 nd Week	October
	Fixed point iteration method.		
3.	Newton's method, LU decomposition.	3 rd Week	October
4.	Gauss-Jacobi, Gauss-Siedel and SOR	4 th Week	October
	iterative methods.		
5.	Lagrange and Newton interpolation:	1 st Week	November
	linear and higher order.		
6.	Finite difference operators,	2 nd Week	November
7.	Numerical differentiation: Newton's	3 rd Week	November
	forward difference formula, Newton's		
	backward difference formula.		
8.	Sterling's Central difference method	4 th Week	November
9.	MTT	First Week	December
10.	MTT	Second Week	December
11.	Topics not covered above	3 rd and 4 th Week	December
12.	Integration: Trapezoidal rule.	4 th Week	February
13.	Simpson's rule, Euler's method.	1 st Week	March

DSE 3B: NUMERICAL METHODS (MATH304)

- There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.
- One (or more) Presentation session will be held at the end of each month.

Skill Enhancement Courses (Bsc 3rd Year)

Course 1: **PROBABILITY AND STATISTICS** (MATH313) Course 2: **TRANSPORTATION AND GAME THEORY** (MATH317) Lectures per Week: 6

Sr. No.	Торіс	Week	Month
1.	Sample space, probability axioms, real	First Week	August
	random variables (discrete and		
	continuous),		
2.	cumulative distribution function,	Second week	August
	probability mass/density functions.		
3.	Mathematical expectation, moments	Third Week	August
4.	moment generating function,	Fourth Week	August
	characteristic function		
5.	Joint cumulative distribution function	First Week	September
	and its properties, joint probability		
	density functions,		
6.	marginal and conditional distributions,	Second Week	September

Course 1: Probability and Statistics

7.	expectation of function of two random variables	Third Week	September
8.	conditional expectations, independent random variables	Fourth Week	September
9.	discrete distributions: uniform, Binomial, Poisson.	Second Week	February
10.	continuous distributions: uniform, normal, exponential.	Third Week	February

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

Sr. No.	Торіс	Week	Month
1.	Transportation problem and its	1 st Week	October
	mathematical formulation, northwest-		
	corner method.		
2.	least cost method, Vogel approximation	2 nd Week	October
	method for determination of starting		
	basic solution	1	
3.	algorithm for solving transportation	3 rd Week	October
	problem (Modi method).	4	
4.	Questions for optimal solution of	4 th Week	October
	transportation problems under		
	degenerate cases.		
5.	Assignment problem and its	1 st Week	November
	mathematical formulation		
6.	Hungarian method for solving	2 nd Week	November
	assignment problem	1	
7.	Game theory: formulation of two-	3 rd Week	November
	person zero sum games	4	
8.	Questions related to 2 by 2 matrix	4 th Week	November
	games		
9.	MTT	First Week	December
10.	MTT	Second Week	December
11.	solving two-person zero sum games,	4 th Week	February
	games with mixed strategies		
12.	graphical solution procedure.	1 st Week	March

Course 2: Transportation and Game theory

• There will be 2 (or more) tests after 13 days (possibly Saturday) in each month.

• One (or more) Presentation session will be held at the end of each month.

<u>Dr. Manish Pal</u> Assistant Professor Department of Mathematics ABV Govt Degree College Sunni, Shimla.